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Abstract

We present a new limiter for the PPM method of Colella and Woodward [P. Colella, P.R. Woodward, The Piecewise
Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics 54 (1984) 174–201] that pre-
serves accuracy at smooth extrema. It is based on constraining the interpolated values at extrema (and only at extrema)
using non-linear combinations of various difference approximations of the second derivatives. Otherwise, we use a stan-
dard geometric limiter to preserve monotonicity away from extrema. This leads to a method that has the same accuracy
for smooth initial data as the underlying PPM method without limiting, while providing sharp, non-oscillatory represen-
tations of discontinuities.
� 2008 Published by Elsevier Inc.
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1. Introduction

One of the great successes in numerical methods for hyperbolic conservation laws has been the use of non-
linear hybridization techniques, known as limiters, to maintain positivity and monotonicity in the presence of
discontinuities and underresolved gradients. As originally formulated [3,14,5], these methods have the prop-
erty that the truncation error is first-order accurate at all extrema, regardless of the accuracy of the underlying
high-order method. This problem has been known since these methods were first introduced, and there have
been a variety of methods proposed to deal with it. Typically, these have been based on the idea allowing the
representation of solution values outside the range defined by the cell averages [16], while still suppressing
oscillations at discontinuities and underresolved gradients. In particular, the methods proposed to solve the
problem to obtain uniform high-order accuracy for smooth solutions [6,8,7,13,2,10] typically have used quite
elaborate analytic and/or geometric constructions. In this note, we propose a particularly simple approach to
solving this problem for the PPM method [4]. It is based on changing the PPM limiter at extrema (and only at
extrema) using non-linear combinations of various difference approximations of the second derivatives. This
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leads to a method that has the same accuracy for smooth initial data as the underlying PPM method without
limiting, while providing sharp, non-oscillatory representations of discontinuities.

2. Scalar advection

We will consider the linear advection equation in one space dimension
oa
ot
þ u

oa
ox
¼ 0 ð1Þ
We assume that we know at time step n the averages of a over finite-volume cells of length h
hainj �
1

h

Z ðjþ1=2Þh

ðj�1=2Þh
aðx; nDtÞdx ð2Þ
The PPM method in [4] for computing hainþ1
j is a conservative finite difference method
hainþ1
j ¼ hainj þ

uDt
h
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where a
nþ1
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jþ1
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is the average of a parabolic interpolant over the interval swept out by the characteristics crossing

the cell face at ðjþ 1
2
Þh
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¼ Ijþ1;�ðrÞ otherwise ð4Þ

where r = |u|Dt/h, and
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The parabolic interpolant aI
jðxÞ; x 2 ½ðj� 1=2Þh; ðjþ 1=2Þh� is uniquely determined by the cell average hainj and

the left and right extrapolated edge values aj;� ¼ aI
jðj� 1=2Þh.
aI
jðxÞ ¼ aj;� þ nðaj;þ � aj;� þ a6;jð1� nÞÞ; a6;j ¼ 6hainj � 3ðaj;� þ aj;þÞ ð7Þ

n ¼ x� jh
h

; 0 6 n 6 1 ð8Þ
For this choice of interpolant, the averages (5) and (6) are given by the following formulas:
Ij;þðrÞ ¼ aj;þ �
r
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2

3
rÞa6;j

� �
ð9Þ
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It is easy to check that
rIj;þðrÞ þ ð1� rÞIj;�ð1� rÞ ¼ hainj ; 0 6 r 6 1 ð11Þ
To complete the description of the algorithm, we must specify how the parabolic interpolant is computed, or,
equivalently, how the aj,± are computed. In [4], this was done in two steps.

2.1. Interpolating face values

We compute high-order accurate approximations to a at cell edges
an
jþ1

2
¼ a ðjþ 1

2
ÞDx; nDt

� �
þOðhpÞ; p P 3 ð12Þ
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and impose the constraint that an
jþ1

2
must lie between the adjacent cell averages
minðhainj ; hai
n
jþ1Þ 6 an

jþ1
2
6 maxðhainj ; hai

n
jþ1Þ ð13Þ
2.2. Constructing the parabolic interpolant

We initialize the left and right extrapolated edge values of the parabolic profile to be aj;� ¼ an
j�1

2
, and con-

strain the left and right edge values so that the interpolated parabolic profile is monotone.

(1) If ðaj;þ � hainj Þðaj;� � hainj Þ > 0, then we set
aj;þ ¼ aj;� ¼ hainj ð14Þ
(2) Otherwise, if one of jaj;� � hainj jP 2jaj;� � hainj j then for that choice of ± = +, � we set
aj;� :¼ hainj � 2ðaj;� � hainj Þ ð15Þ
In [4], (12) is computed by taking averages of a piecewise-linear interpolant to which van Leer limiting was
applied. In smooth regions away from extrema, this leads to the formula
an
jþ1

2
¼ 7

12
ðhainj þ hai

n
jþ1Þ �

1

12
ðhainj�1 þ hai

n
jþ2Þ ð16Þ
which is fourth-order accurate. In addition, the use of van Leer limiters automatically enforces the constraint
(13).

For smooth solutions away from extrema, PPM is third-order accurate for linear advection, and fourth-
order accurate in the limit of vanishing CFL number. However, the monotonicity constraints (13) and (14),
at extrema reduce the truncation error at such locations to O(h). This reduces the overall accuracy of the
method, as well as introducing a non-smooth component to the error. To eliminate this problem, we construct
a new limiting scheme at extrema to replace (13) and (14). It follows the same outline as that given above.

2.3. Interpolating face values

We use a linear scheme to compute high-order accurate approximations to a at cell edges, such as the
fourth-order discretization (16). To obtain the results presented here, we used the following sixth-order
approximation, which provides slightly better accuracy for smooth solutions at low CFL number, at a modest
additional cost.
an
jþ1

2
¼ 37

60
ðhainj þ hai

n
jþ1Þ �

2

15
ðhainj�1 þ hai

n
jþ2Þ þ

1

60
ðhainj�2 þ hai

n
jþ3Þ ð17Þ
We limit this value by using a non-linear combination of approximations to the second derivative. If an
jþ1

2
does

not satisfy (13), then we impose the following constraint:
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Otherwise, ðD2aÞjþ1
2;lim
¼ 0. Then
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Here C > 1 is a constant independent of the mesh spacing h. If a is smooth and o2
xa 6¼ 0 in the neighborhood of

the extremum, then ðD2aÞjþ1
2
; ðD2aÞjþ1

2;L
and ðD2aÞJþ1

2;R
are all consistent approximations to o2

xa and differ by no

more than O(h) from one another. Thus for h sufficiently small, ðD2aÞjþ1
2 lim ¼ ðD2aÞjþ1

2
and an

jþ1
2

will remain un-

changed by the limiting process, thus preserving the accuracy of the interpolated value. We also observe that,
at degenerate extrema ððoxaÞðx; tÞ ¼ ðo2

xaÞðx; tÞ ¼ 0Þ, all three estimates of o2
xaare themselves no greater than

O(h2), and the resulting value for an
jþ1

2
is fourth-order accurate. On the other hand, if the violation of the mono-

tonicity constraint (13) is at a face adjacent to a discontinuity, we expect that one of ðD2aÞjþ1
2;L
; ðD2aÞjþ1

2;R
will

be much smaller in magnitude than ðD2aÞjþ1
2
; or have a different sign. In either case, the limiting process will

reduce the amplitude of the oscillation, bring the edge value closer to the average of the two adjacent cell aver-
ages. This is a simple algebraic form of the mechanism used in [16] by which smooth extrema are left un-
changed, while still limiting the interpolated profile at discontinuities.

2.4. Constructing the parabolic interpolant

We initialize the left and right extrapolated values aj;� ¼ an
j�1=2, which are then modified to constrain the

parabolic profile in each cell. Then the two steps described above for the PPM algorithm are replaced by
the following:

(1) If
ðaj;þ � hainj Þðhai
n
j � aj;�Þ 6 0

ðhainj�1 � hai
n
j Þðhai

n
j � hai
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ð20Þ

then we are at a local extremum, and we use an approach similar to that used above to constrain an
j�1

2
,

without losing accuracy if the solution is smooth
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Again, if (D2a)j,(D
2a)j,{L,C,R} all have the same sign, then

ðD2aÞj;lim ¼ s minðCjðD2aÞj;Lj; CjðD2aÞj;Rj; CjðD2aÞj;Cj; jD2ajjÞ
s ¼ signððD2aÞjÞ
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for some constant C > 1, chosen independently from h. Otherwise, (D2a)j,lim = 0. Then

aj;� :¼ hainj þ ðaj;� � hainj Þ
ðD2aÞj;lim
ðD2aÞj

ð23Þ

If the denominator in the last expression vanishes, we set the ratio of the two estimates of o2
xa to be zero.

The purpose of this limiter is to reduce a6,j so that (D2a)j = (D2a)j,lim. Note that if (D2a)j,lim = 0, then the
edge values are the same as in (14). As before, at smooth extrema with o2

xa 6¼ 0, this limiting process
leaves the extrapolated edge values unchanged if h is sufficiently small, and introduces an error no
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greater than O(h4) at degenerate extrema. Near discontinuities and other underresolved gradients, the
same mechanisms for suppressing oscillations as those described for (18) and (19) are in effect.
(2) If (20) does not hold, we could proceed as in the original PPM method to impose the constraint (15) to
obtain a monotonic parabolic profile in the cell. However, it was pointed out in [15] that the requirement
that the parabolic profile be monotone in a cell is more restrictive than is required for the method to be
monotonicity-preserving. In the results presented here, we impose a less-restrictive, but sufficient condi-
tion analogous to that satisfied by van Leer limiting in [14].
shainj�1 6 sIj;�ðrÞ 6 shainj 6 sIj;þðrÞ 6 shainjþ1 ð24Þ
s ¼ signðhainjþ1 � hai

n
j�1Þ

We define aj;� ¼ aj;� � hainj . If one of |aj,±| P 2|aj,�| holds, then for that choice of ± = +,� we compute

dIext ¼
�a2

j;�

4ðaj;þ þ aj;�Þ
; da ¼ hainj�1 � hai

n
j ð25Þ

If dIext P sda, then we set

aj;� :¼ hainj � ð2daþ 2sððdaÞ2 � daaj;�Þ
1
2Þ ð26Þ

which causes the parabolic interpolant to satisfy (24). It follows easily from (24) and (11) that

minðhainj ; hai
n
j�s0 Þ 6 hai

nþ1
j 6 maxðhainj ; hai

n
j�s0 Þ; s0 ¼ signðuÞ

which implies that the scheme is monotonicity-preserving away from extrema.To summarize, we modify
the original PPM algorithm in the following fashion. We use (17) to construct an

jþ1
2
, constraining the val-

ues by (18) and (19) at locations where (13) is not satisfied. In constructing the parabolic profile, we use
(22) and (23) to compute the parabolic profile at local extrema where (20) holds. Otherwise, we use a
standard monotonicity-preserving limiter such as (15) or (26). In the results presented in the next sec-
tion, we have used (26).
3. Results

We present results for advection in one dimension that demonstrate the improvement of the accuracy of the
method using this limiter. We use the following standard 1D test problems [17]:

� Gaussian: aðx; 0Þ ¼ e256ðx�1
2Þ

2

.
� Semi-circle: aðx; 0Þ ¼ max 1

16
� ðx� 1

2
Þ2

� �
; 0

� �1
2

.

� Square wave: a(x, 0) = 1 if jx� 1
2
j 6 1

4
, otherwise a(x, 0) = 0.

All calculations are performed on the unit interval with periodic boundary conditions, advection velocity
u = 1, and CFL number r = 0.2. For the new extremum-preserving limiter, we set the coefficient C appearing
in (18) and (22) to be C = 1.25. We have not found any straightforward geometric interpretation of the new
limiter to guide our choice of the coefficient C, other than it must be greater than 1, independent of h. For the
test cases presented here, the results appear to be insensitive to the exact value of C over the range 1.25–5. In
order to obtain third-order accurate results for smooth problems, we initialize the averages of a to be fourth-
order accurate at all cells where the solution is smooth.
and convergence rates for 1D advection tests for the original PPM limiter

G L1 Rate G L1 Rate SC L1 Rate S L1 Rate

7.6E�2 – 4.8E�1 – 7.8E�3 – 8.4E�2 –
2.7E�2 1.5 2.7E�1 0.8 4.3E�3 0.9 4.8E�2 0.8
7.7E�3 1.8 1.0E�1 1.4 1.9E�3 1.2 2.8E�2 0.8
1.3E�3 2.6 3.1E�2 1.7 8.3E�4 1.2 1.6E�2 0.8

aussian, SC = semi-circle, S = square-wave. Time t = 10, r = 0.2.
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hai0j ¼ aðjh; 0Þ þ 1

24
ðaððj� 1Þh; 0Þ � 2aðjh; 0Þ þ aððjþ 1Þh; 0ÞÞ ð27Þ
Tables 1 and 2 show errors and rates of convergence for these three test problems using, respectively, the ori-
ginal PPM limiter and the new limiter described here. The use of the extremum-preserving limiter leads to
2
and convergence rates for 1D advection tests using extremum-preserving limiter

G L1 Rate G L1 Rate SC L1 Rate S L1 Rate

4.1E�2 – 2.9E�1 – 7.3E�3 – 7.7E�2 –
1.1E�2 1.9 9.7E�2 1.6 3.2E�3 1.2 4.4E�2 0.8
2.0E�3 2.5 1.8E�2 2.4 1.4E�3 1.2 2.6E�2 0.8
2.6E�4 2.9 2.5E�3 2.8 6.1E�4 1.2 1.5E�2 0.8

0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

x

a

Analytic
Ext—Pres
Conven

The extremum-preserving limiter (blue) vs. the original PPM limiter (red) vs. the exact solution (black). Gaussian test, Ncell = 128,
r = 0.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The extremum-preserving limiter (blue) vs. the original PPM limiter (red) vs. the exact solution (black). Square-wave test, test,
128, t = 10, r = 0.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
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significant improvement in the error in the Gaussian test problem, small improvement in the semi-circle prob-
lem, and no significant change in the error for the square-wave problem. The improved accuracy is entirely due
to the use of the new limiters that are applied at extrema, and only makes a difference for cases where the error
in the old approach is dominated by that at smooth extrema. For problems for which the main error is due to
the presence of discontinuities or other singularities, we expect that the methods should produce very similar
results. This conclusion is supported by the comparisons in Figs. 1 and 2.
4. Conclusions and future work

We presented here a simple method that generalizes the limiter in [4] to preserve the high-order accuracy of
the method at smooth extrema. This is done by replacing the constraints (13) and (14) at extrema with (19) and
(23). The impact of the application of this method on the computational cost is negligible, both because of its
simplicity, and since it is only applied at extrema. The method described here is only one of a number of design
variations using these ideas, some of which are described in [11]. In particular, we can use this approach to
obtain a method for computing MUSCL slopes that preserves smooth extrema that is closely related to the
approach described in [16]. One can then use this MUSCL calculation as the starting point for computing
fourth- or sixth-order edge values, along the lines of the original PPM algorithm.

The extension of PPM to non-linear systems of hyperbolic conservation laws as described in [4,9] is based
the use of an appropriate upstream-centered predictor step that computes (4) for each family of characteristic
variables to obtain the left and right states for a Riemann problem, the solution to which is then used to com-
pute the fluxes. The limiter is either applied componentwise to the primitive variables, or applied to the char-
acteristic variables. The method described here can be trivially used for the primitive variable interpolation
case, and the construction in [9] can be easily extended to apply it to the characteristic variables; for details,
see [11]. Such a method has been implemented in [12] for gas dynamics, and it is observed there that the results
obtained using that method eliminate the clipping of smooth extrema, without any loss in robustness of the
treatment of strongly non-linear shocks by the overall method.

This work also provides a starting point for constructing uniformly high-order finite-volume methods for
multidimensional hyperbolic PDE, based on high-order quadratures that correctly distinguish between cell
averages, face averages, and point values [1], and the method of lines for time discretization. For such an algo-
rithm, we would use the limiter described above to compute (possibly discontinuous) extrapolated edge values,
in much the same fashion that the MUSCL limiter is used in method-of-lines calculations.

Finally, there is no guarantee that the method described here preserves global bounds such as positivity.
This is an important property for some physical applications such as kinetic systems, where an advected quan-
tity represents a number density or probability density in phase space. To deal with this problem, one can
combine the present method with the FCT method in [16], with the latter used only to enforce the global
bounds.
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